Thursday, 11 July 2013

The History of the Computer Mouse
Today, the mouse is an essential input device for all modern computers but it wasn't so long ago that computers had no mouse and no graphical user interface. Data was entered by typing commands on a keyboard.
The mouse was invented by Douglas Engel Bart in 1964 and consisted of a wooden shell, circuit board and two metal wheels that came into contact with the surface it was being used on.
It was 8 years later in 1972 that Bill English developed the design further by inventing what is known as the "Ball Mouse" that we know today. The ball replaced the wheels and was capable of monitoring movement in any direction. The ball came into contact with two rollers that in turn spun wheels with graduations on them that could be turned into electrical pulses representing direction and speed.
At the time Bill English was working for Xerox Parc (Palo Alto Research Centre) the research and development center set-up by Xerox to 'design the future of computing'. The mouse became part of the ground breaking Xerox Alto computer system which was the first minicomputer system to offer a graphical user interface.

It would be another 8 years before the mouse would be developed any further. An optical mouse was developed in around 1980, eliminating the ball which often became dirty from rolling round the desktop, negatively affecting its operation. However, they were far too expensive to be used widely. In fact it wasn't until around 1998 with the increase in microcontroller processing power and the reduction in component costs that optical mice became a commercially viable alternative to the ball mouse and infiltrated the mass consumer market.

Today the optical mouse has completely replaced the ball mouse being supplied as standard with all new computers.

Engelbart's mouse was first publicly demonstrated at the 1968 Fall Joint Computer Conference.
The presentation is available to read on this page "
A Research Center for Augmenting Human Intellect"

            Mechanical mice

German company Telefunken published on their early ball mouse on October 2, 1968. Telefunken's mouse was sold as optional equipment for their computer systems. Bill English, builder of Engelbart's original mouse, created a ball mouse in 1972 while working for Xerox PARC.
 The ball mouse replaced the external wheels with a single ball that could rotate in any direction. It came as part of the hardware package of the Xerox Alto computer. Perpendicular chopper wheels housed inside the mouse's body chopped beams of light on the way to light sensors, thus detecting in their turn the motion of the ball. This variant of the mouse resembled an inverted trackball and became the predominant form used with personal computers throughout the 1980s and 1990s. The Xerox PARC group also settled on the modern technique of using both hands to type on a full-size keyboard and grabbing the mouse when required.
The ball mouse has two freely rotating rollers. They are located 90 degrees apart. One roller detects the forward–backward motion of the mouse and other the left–right motion. Opposite the two rollers is a third one (white, in the photo, at 45 degrees) that is spring-loaded to push the ball against the other two rollers. Each roller is on the same shaft as an encoder wheel that has slotted edges; the slots interrupt infrared light beams to generate electrical pulses that represent wheel movement. Each wheel's disc, however, has a pair of light beams, located so that a given beam becomes interrupted, or again starts to pass light freely, when the other beam of the pair is about halfway between changes.
Simple logic circuits interpret the relative timing to indicate which direction the wheel is rotating. This encoder scheme is sometimes called quadrature encoding of the wheel rotation, as the two optical sensor produce signals that are in approximately quadrature phase. The mouse sends these signals to the computer system via the mouse cable, directly as logic signals in very old mice such as the Xerox mice, and via a data-formatting IC in modern mice. The driver software in the system converts the signals into motion of the mouse cursor along X and Y axes on the computer screen.
The ball is mostly steel, with a precision spherical rubber surface. The weight of the ball, given an appropriate working surface under the mouse, provides a reliable grip so the mouse's movement is transmitted accurately. Ball mice and wheel mice were manufactured for Xerox by Jack Hawley, doing business as The Mouse House in Berkeley, California, starting in 1975. Based on another invention by Jack Hawley, proprietor of the Mouse House, Honeywell produced another type of mechanical mouse. Instead of a ball, it had two wheels rotating at off axes. Key Tronic later produced a similar product.
Modern computer mice took form at the École Polytechnique Fédérale de Lausanne (EPFL) under the inspiration of ProfessorJean-Daniel Nicoud and at the hands of engineer and watchmaker André Guignard. This new design incorporated a single hard rubber mouse ball and three buttons, and remained a common design until the mainstream adoption of the scroll-wheel mouse during the 1990s. In 1985, René Sommer added a microprocessor to Nicoud's and Guignard's design. Through this innovation, Sommer is credited with inventing a significant component of the mouse, which made it more "intelligent; though optical mice from Mouse Systems had incorporated microprocessors by 1984.
Another type of mechanical mouse, the "analog mouse" (now generally regarded as obsolete), uses potentiometers rather than encoder wheels, and is typically designed to beplug compatible with an analog joystick. The "Color Mouse", originally marketed by RadioShack for their Color Computer (but also usable on MS-DOS machines equipped with analog joystick ports, provided the software accepted joystick input) was the best-known example.

Optical and laser mice

Optical mice make use of one or more light-emitting diodes (LEDs) and an imaging array of photodiodes to detect movement relative to the underlying surface, rather than internal moving parts as does a mechanical mouse. A laser mouse is an optical mouse that uses coherent (laser) light.
The earliest optical mice detected movement on pre-printed mouse pad surfaces, whereas the modern optical mouse works on most opaque surfaces; it is usually unable to detect movement on specular surfaces like glass. Laser diodes are also used for better resolution and precision. Battery powered, wireless optical mice flash the LED intermittently to save power, and only glow steadily when movement is detected.

Inertial and gyroscopic mice

Often called "air mice" since they do not require a surface to operate, inertial mice use a tuning fork or other accelerometer (US Patent 4787051, published in 1988) to detect rotary movement for every axis supported. The most common models (manufactured by Logitech and Gyration) work using 2 degrees of rotational freedom and are insensitive to spatial translation. The user requires only small wrist rotations to move the cursor, reducing user fatigue or "gorilla arm".
Usually cordless, they often have a switch to deactivate the movement circuitry between use, allowing the user freedom of movement without affecting the cursor position. A patent for an inertial mouse claims that such mice consume less power than optically based mice, and offer increased sensitivity, reduced weight and increased ease-of-use. In combination with a wireless keyboard an inertial mouse can offer alternative ergonomic arrangements which do not require a flat work surface, potentially alleviating some types of repetitive motion injuries related to workstation posture.

3D mice

Also known as bats, flying mice, or wands, these devices generally function through ultrasound and provide at least three degrees of freedom. Probably the best known example would be 3Dconnexion/Logitech's Space Mouse from the early 1990s. In the late 1990s Kantek introduced the 3D Ring Mouse. This wireless mouse was worn on a ring around a finger, which enabled the thumb to access three buttons. The mouse was tracked in three dimensions by a base station.Despite a certain appeal, it was finally discontinued because it did not provide sufficient resolution.
A recent consumer 3D pointing device is the Wii Remote. While primarily a motion-sensing device (that is, it can determine its orientation and direction of movement), Wii Remote can also detect its spatial position by comparing the distance and position of the lights from the IR emitter using its integrated IR camera (since the nunchuk accessory lacks a camera, it can only tell its current heading and orientation). The obvious drawback to this approach is that it can only produce spatial coordinates while its camera can see the sensor bar.
A mouse-related controller called the Space Ball has a ball placed above the work surface that can easily be gripped. With spring-loaded centering, it sends both translational as well as angular displacements on all six axes, in both directions for each. In November 2010 a German Company called Axsotic introduced a new concept of 3D mouse called 3D Spheric Mouse. This new concept of a true six degree-of-freedom input device uses a ball to rotate in 3 axes without any limitations.

Tactile mice



















In 2000, Logitech introduced a "tactile mouse" that contained a small actuator to make the mouse vibrate. Such a mouse can augment user-interfaces with haptic feedback, such as giving feedback when crossing a window boundary. To surf by touch requires the user to be able to feel depth or hardness; this ability was realized with the first electro rheological tactile mice but never marketed.

Ergonomic mice

As the name suggests, this type of mouse is intended to provide optimum comfort and avoid injuries such as carpal tunnel syndrome, arthritis and other repetitive strain injuries. It is designed to fit natural hand position and movements, to reduce discomfort.

Gaming mice

These mice are specifically designed for use in computer games. They typically employ a wide array of controls and buttons and have designs that differ radically from traditional mice. It is also common for gaming mice, especially those designed for use in real-time strategy games such as StarCraft or League of Legends, to have a relatively high sensitivity, measured in dots per inch (DPI). Some advanced mice from gaming manufacturers also allow users to customize the weight of the mouse by adding or subtracting weights to allow for easier control. Ergonomic quality is also an important factor in gaming mice, as extended gameplay times may render further use of the mouse to be uncomfortable.
Multiple-mouse systems
Some systems allow two or more mice to be used at once as input devices. 16-bit era home computers such as the Amiga used this to allow computer games with two players interacting on the same computer. The same idea is sometimes used in collaborative software, e.g. to simulate a whiteboard that multiple users can draw on without passing a single mouse around.
Microsoft word, since Window 3.1, has supported multiple simultaneous pointing devices. Because Windows only provides a single screen cursor, using more than one device at the same time requires cooperation of users or applications designed for multiple input devices.
Multiple mice are often used in multi-user gaming in addition to specially designed devices that provide several input interfaces.
Windows also has full support for multiple input/mouse configurations for multiuser environments.
Starting with Windows XP, Microsoft introduced a SDK for developing applications that allow multiple input devices to be used at the same time with independent cursors and independent input points.
The introduction of Vista and Microsoft Surface (now known as Microsoft pixel sense) introduced a new set of input APIs that were adopted into Windows 7, allowing for 50 points/cursors, all controlled by independent users. The new input points provide traditional mouse input; however, are designed for more advanced input technology like touch and image. They inherently offer 3D coordinates along with pressure, size, tilt, angle, mask, and even an image bitmap to see and recognize the input point/object on the screen.
As of 2009, Linux distributions and other operating systems that use X.Org, such as Open Solaris and FreeBSD, support 255 cursors/input points through Multi-Pointer X. However, current no window managers support Multi-Pointer X leaving it relegated to custom software usage.
There have also been propositions of having a single operator use two mice simultaneously as a more sophisticated means of controlling various graphics and multimedia applications.
Buttons
Mouse buttons are micro switches which can be pressed to select or interact with an element of a graphical user interface, producing a distinctive clicking sound.
The three-button scroll mouse has become the most commonly available design. As of 2007 (and roughly since the late 1990s), users most commonly employ the second button to invoke a contextual menu in the computer's software user interface, which contains options specifically tailored to the interface element over which the mouse cursor currently sits. By default, the primary mouse button sits located on the left-hand side of the mouse, for the benefit of right-handed users; left-handed users can usually reverse this configuration via software.
Mouse speed
Mickeys per second is a unit of measurement for the speed and movement direction of a computer mouse. One mickey is approximately 1/200th of an inch. But speed can also refer to the ratio between how many pixels the cursor moves on the screen and how far the mouse moves on the mouse pad, which may be expressed as pixels per Mickey, or pixels per inch, or pixels per cm. The directional movement is called the horizontal mickey count and the vertical mickey count.
The computer industry often measures mouse sensitivity in terms of counts per inch (CPI), commonly expressed as dots per inch (DPI) – the number of steps the mouse will report when it moves one inch. In early mice, this specification was called pulses per inch (ppi). The Mickey originally referred to one of these counts, or one resolvable step of motion. If the default mouse-tracking condition involves moving the cursor by one screen-pixel or dot on-screen per reported step, then the CPI does equate to DPI: dots of cursor motion per inch of mouse motion. The CPI or DPI as reported by manufacturers depends on how they make the mouse; the higher the CPI, the faster the cursor moves with mouse movement. However, software can adjust the mouse sensitivity, making the cursor move faster or slower than its CPI. Current software can change the speed of the cursor dynamically, taking into account the mouse's absolute speed and the movement from the last stop-point. In most software this setting is named "speed", referring to "cursor precision". However, some software[ names this setting "acceleration", but this term is in fact incorrect. The mouse acceleration, in the majority of mouse software, refers to the setting allowing the user to modify the cursor acceleration: the change in speed of the cursor over time while the mouse movement is constant.
For simple software, when the mouse starts to move, the software will count the number of "counts" or "mickeys" received from the mouse and will move the cursor across the screen by that number of pixels (or multiplied by a rate factor, typically less than 1). The cursor will move slowly on the screen, having a good precision. When the movement of the mouse passes the value set for "threshold", the software will start to move the cursor more quickly, with a greater rate factor. Usually, the user can set the value of the second rate factor by changing the "acceleration" setting.
Operating systems sometimes apply acceleration, referred to as "ballistics", to the motion reported by the mouse. For example, versions of Windows prior to Windows XP doubled reported values above a configurable threshold, and then optionally doubled them again above a second configurable threshold. These doublings applied separately in the X and Y directions, resulting in very nonlinear response.
Mouse pads
Engelbart's original mouse did not require a mouse pad; the mouse had two large wheels which could roll on virtually any surface. However, most subsequent mechanical mice starting with the steel roller ball mouse have required a mouse pad for optimal performance.
The mouse pad, the most common mouse accessory, appears most commonly in conjunction with mechanical mice, because to roll smoothly the ball requires more friction than common desk surfaces usually provide. So-called "hard mouse pads" for gamers or optical/laser mice also exist.


Most optical and laser mice do not require a pad. Whether to use a hard or soft mouse pad with an optical mouse is largely a matter of personal preference. One exception occurs when the desk surface creates problems for the optical or laser tracking, for example, a transparent or reflective surface.